
Preprint
UCRL-JC-147088

Statistical Stability and
Time-Reversal Imaging in
Random Media

J. Berryman, L. Borcea, G. Papanicolaou, C. Tsogka

This article was submitted to
Geometric Methods in Inverse Problems and PDE Control,
Minneapolis, MN, July 16-27, 2001

February 5, 2002

U.S. De ~artment of Energy

[

1 Lawrence

Livermore
National
Laboratory

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States G0vemment nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a .journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
Or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Availabl e electronically at http://www.doe.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office Of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553,6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.~ovv

Online ordering: http: //www.ntis.gov / ordering.htm

OR "

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html



¯ Statistical stability and time-reversal imaging in random media

James Berryman* Liliana Boreeat George Papanicolaou~ Chrysoula Tsogka§

February 5, 2002

Abstract

Localization of targets imbedded in a heterogeneous background medium is a common prob-
lem in seismic, ultrasonic, and electromagnetic imaging problems. The best imaging techniques
make direct use of the eigenfunctions and eigenvalues of the array response matrix, as recent
work on time-reversal acoustics has shown. Of the various imaging functionals studied, one
that is representative.of a preferred class is a time-domain generalization of MUSIC (MUltiple
Signal Classification), which is a well-known linear subspace method normally applied only in
the frequency domain. Since statistical stability is not characteristic of the frequency domain,
a transform back to the time domain after first diagonalizing the array data in the frequency
domain takes optimum advantage of both the time-domain stability and the frequency-domain
orthogonality of the relevant eigenfunctions.

1 Introduction

There have been many approaches to estimating target location using seismic, ultrasonic, and
electromagnetic imaging methods. Some of the most popular ones in recent years continue to be
matched-field processing [6, 17], MUSIC (MUltiple Signal Classification) [24, 18, 25], and other
linear subspace methods [18, 19, 7]. When the targets are imbedded in heterogeneous media so
that significant multiple scattering occurs between array and target, the randomness has a different
character than that usually envisioned in these traditional analyses. Yet there are a great many
applications [11, 12, 13, 14, 10, 27] ranging from the biomedical to ocean acoustics to nondestructive
evaluation, where imaging is important and where sources of randomness not associated with
the targets to be imaged can play havoc with the traditional methods. Time-reversal acoustics
[15, 16, 23] offers part of the answer to these difficult imaging questions, and some significant
improvements over these methods for imaging in random media are summarized here.

We have found that methods designed to work well for finding targets in homogeneous media
do not necessarily work very well for targets imbedded in random media. In particular, the fact
that the linear subspace methods are norma!ly applied in the frequency domain combined with
the fact that statistically stable methods are normally found only in the time domain, forces us
to seek different imaging strategies in the random media imaging problems of interest to us here.
We find that a set of imaging functionals having the desired characteristics exists, and furthermore
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that the properties of this set can be completely understood when the time-domain self-averaging
-- that gives rise to the required statistical stability of the target images -- is taken properly into
account. We can largely eliminate the undesirable features of the frequency domain methods by
making a transform back to the time domain after first diagonalizing sensor array data. While the
frequency domain analysis takes optimum advantage of eigenfunction orthogonality of the array
data, a transform to the time-domain takes optimum advantage of wave self-averaging which then
leads to the statistical stability we require for reliable and repeatable imaging in random media.

In the following sections, we first introduce the imaging problem in the next section. Then we
summarize our technical approach. Examples of the cross-range (or bearing) estimates obtained
with these methods are presented and then combined with range information from time-delay data
to obtain our best estimates and images of target location. The final section summarizes our
conclusions about the methods discussed.

2 Imaging Problem

For definiteness, we will treat ultrasonic imaging problems. Our analysis assumes that the array
has N transducers located at spatial positions Xp, for p = 1,... ,N. (See Figure 1.) When used
in active mode, the array probes the unknown acoustic medium containing M small scatterers by
emitting pulses and recording the time traces of the back-scattered echos. We call the resulting data
Set the multistatic array response (or transfer) matrix P(t) = (Ppq(t)), where p and q both range
over all the array elements. For our simulations, we consider a linear array where two adjacent
point transducers are a distance )‘/2 apart, with )‘ being the carrier (central) wavelength of 
probing pulses. Such an arrangement ensures that the collection of transducers behaves like an
array having aperture a = (N- 1)),/2 and not like separate entities, while keeping the interference
among the transducers at a minimum [26]. Our goal is to detect and then localize all M of the
targets in the random medium, if possible.

Our simulations assume that )‘ < ~ << a = (N-I))‘/2 << L, where )‘ is the central wavelength,
is a characteristic length scale of the inhomogeneity (like a correlation length), a is the array

aperture, and L is the approximate distance to the targets from the array. This is the regime where
multipathing, or multiple scattering, is significant even when the standard deviation of sound speed
fluctuations is only a few percent. Values used in the codes are )‘ = 0.5mm, a = 2.5mm, with 
background wave speed of co = 1.5km/s. More details concerning the simulations may be found in
[5].

Typical array processing methods assume that the targets are far away from the array and,
therefore, they look like points. Similarly, the propagation medium is assumed homogeneous and
so the observed wavefronts scattered by the targets look like plane waves at the array. Array noise
has usually been treated as due either to diffuse sources 0f white noise coming simultaneously from
all directions, or to isolated "noise" having the same types of source characteristics as the targets
of interest. But in random media with significant multiple scattering, the resulting "noise" cannot
be successfully treated in these traditional ways.

Real-space time-reversal processing of the array response data involves an iterative procedure:
sending a signal, recording and storing the scattered return signal, time-reversing and then rebroad-
casting the stored signal, with subsequent repetitions. This procedure amounts to using the power
method for finding the singular vector of the data matrix having the largest singular value. When
the full response/transfer matrix has been measured for a multistatic active array, the resulting
data matrix can be analyzed directly by Singular Value Decomposition (SVD) to determine not
only the singular vector having the largest singular value, but all singular vectors and singular



values- simultaneously [21, 22, 20].
Imaging is always done using a fictitious medium for the simulated backpropagation that pro-

duces these images since the real medium is not known. Its large-scale features could be estimated
from other information, such as geological data obtained by seismic methods. For example, migra-
tion methods [8, 1, 3] can be used, where very large arrays -- much larger than those we contemplate
using here -- are required. However, the small-scale random inhomogeneities are not known and
cannot be effectively estimated, so the simplest thing to do is ignore them when imaging, and use
methods that are statistically stable and therefore insensitive to the exact character of these small
inhomogeneities.

3 Technical Approach

In our ¯simulations, the array response matrix P(w) in the frequency domain is symmetric but not
Hermitian. In general (as for array elements with nonisotropic radiation patterns), it is neither
Hermitian nor symmetric, but with slight modifications our methods apply to this case as well.
The eigenvectors of P(o))PH(o.)) having unit norm are denoted by Ur(w), for r -- 1,... ,N. The
eigenvalues of/°(O.))PH((.d) are a2(w), with at(w) being the singular values of P(w). The significant
singular vectors Ur(w) [i.e., those in the range of P(w)] have singular values at(w) > 0 for 1 < 
M, where M is either the number of targets, or the size of the array (N) -- whichever is smaller.
We assume that the number of targets is smaller than the array size N, so that M is in fact the
number of distinguishable targets; this assumption is required by the imaging methods we employ
such as MUSIC as will become clear while presenting the method.

The notation used here is the same as in [5]. We denote by g0(Y, w) the deterministic source
vector observed at the array for a source located at yS. Then, g0(y, w) is given 

)~0(yS, w) G°(YS’ x2’ w)
, (1)

G0(ys, XN, w)

where G0(y8, xj, w) is the deterministic two-point Green’s function, and xj is the location of the
j-th array element.

We also define the projection 7~N~0(y, w) of ~0(yS,w) onto the null-space PPH(w)by

PN~0 (ys, w) = ~o(ys, W)
M

-~’~ [UrU(w)~o(yS,w)] Ur(w),
r=l

(2)

for each frequency in the support of the probing pulse f’(w).
The method we describe here is a time domain variant of MUSIC [24, 9], which we label DO:A,

because it gives very stable estimates of the direction of arrival. Frequency domain MUSIC takes
a replica (or trial) vector, which is the impulse response or Green’s function for a point source 
some point in the space, and dots this vector into an observed singular vector at the array. With
appropriate normalization, this dot product acts like a direction cosine of the angle between the
replica vector and the data vector. If the sum of the squares of these direction cosines is very close
to unity, then it is correct to presume that the source point of that replica vector is in fact a target



location since it lies wholely in the range of ~he array response matrix. Crudely speaking, imaging
is accomplished by plotting 1/[1 - cos2(.)], Which will have a strong peak when the replica source
point is close to the target location.

We form the sum

N

= 5,
p----1

(3)

with

.T’(J) (yS, t) = f e-i~taj (W)~o (yS, w)dw

and display the objective functional

(4)

M minG(J)(ys)

7~DOA(Y ~) = y8 (5)

for points yS in the target domain.
The arrival time tp(y s) is the deterministic travel time from the p-th transducer to the search

point,

tp(ys) - I XP - YsI (6)
co

4 Examples and Range Estimation

Examples for frequency-domain MUSIC with two targets are displayed in Fig. 2. It is clear from
this Figure that no range information is obtained from frequency-domain objective functionals,
and even the cross-range information is often quite haphazard in random media. Lack of statistical
stability prevents these imaging approaches from being useful in random media with significant
multipathing as considered here. When the realization of the random medium is changed, the
images obtained typically change also -- which is what we mean by the phrase "lack of statistical
stability" for these methods. Note that this approach works well for homogeneous media, but
quickly breaks down when randomness of the velocity field is important.

Examples for time-domain MUSIC with two targets are displayed in Fig. 3. The cross-range
results show dramatic improvement over results using other methods [2]. Range information is
still not to be found here, due to loss of coherence in the random medium; we cannot get exact
cancellation at the targets in this situation whereas coherent refocusing is possible in homogeneous
media. But the statistical stability of the universal "comet tails" -- which was also anticipated
by recent theoretical analyses [4] -- is now easily observed. The images are necessarily shown for
specific realizationsi but the results do not change significantly when the underlying realization of
the random medium is changed. This fact has been repeatedly shown in our simulations, and is
the main operational characteristic of statistically stable methods.

Target localization requires an estimate of the range. In the far field, only the arrival time
information is useful for this purpose. Arrival time information is present in the singular vectors
and can also be averaged using multiple copies in the array response matrix for random media --
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see [5] -- to obtain very stable estimates of arrival times. We will now combine this approach with
the time-domain methods to obtain well-localized images of the targets.

For each search point Ys, we compute the objective functional

M n~inG~)AT(Ys)

T~SAT(ys) = E c(J) ~..s~
j=1 :,SATt., J

(7)

where

N

VSAT’~(j) (ys)= ~(J)(yS, tp(yS) 2 (j )‘ -- tp(yS)] 2 ’
p=l

(8)

Here .T(J)(yS, t) is defined by (4), tp(yS), for p = 1,... , N, are the deterministic arrival times given
by (6) and T(j), for p = 1,... , N, and j = 1,... , M, are the computed arrival times. We call (7)
the Subspace Arrival Time (SAT) estimator.

Examples of SAT (or time-domain MUSIC with arrival time estimates from the averaged sin-
gular vectors) for two targets are displayed in Fig. 4. This method is statistically stable and gives
good estimates of the target locations. These localization results have degraded the least of all
those considered [5, 2] at the highest values of the random fluctuations.

5 Conclusions

For imaging applications in randomly inhomogeneous acoustical media, the results summarized
here lead us to the following conclusions: (1) Single frequency methods (including MUSIC) are 
statistically stable, and therefore cannot be used without modification in the presence of significant
amounts of spatial heterogeneity in the acoustic wave speed distribution. (2) In contrast, time
domain methods are statistically stable for any objective functional having the characteristic that
the random Green’s functions appear in Hermitian conjugate pairs of gg* [5], because large random
phases cancel precisely. This result has been shown here to be true for DOA, and is expected to be
true more generally. (3) The DOA gives only cross-range information. Range information must 
obtained separately.

To isolate the targets in random media, we need either multiple views (using multiple arrays)
so we can triangulate, or we need to extract a direct measure of range from the data. In the SAT
examples shown here, we used arrival time for the range estimation.
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Figure 1: Array probing of a randomly inhomogeneous medium cbntaining M small scatterers.
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Figure 2: The MUSIC central frequency estimate of the location of two targets in random media
with different strength of the fluctuations of the sound speed. The exact location of the targets is

denoted by green stars. The standard deviation s and maximum fluctuations (M.F.) axe indicated

on the top of each view. The horizontal axis is the range in mm and the vertical axis is the
cross-range in mm.
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Figure 4: The SAT estimate for two targets.


